A Simple Cocyclic Jacket Matrices
نویسندگان
چکیده
We present a new class of cocyclic Jacket matrices over complex number field with any size. We also construct cocyclic Jacket matrices over the finite field. Such kind of matrices has close relation with unitary matrices which are a first hand tool in solving many problems in mathematical and theoretical physics. Based on the analysis of the relation between cocyclic Jacket matrices and unitary matrices, the common method for factorizing these two kinds of matrices is presented.
منابع مشابه
Flexible Jacket Matrices for Cooperative Multi-Agent Network
Currently, due to the growing needs in Communications of Multi-Agent Network, DFT and DCT orthogonal transform which is used in communication systems with a fixed size of 2 p (p is a prime) and 2 respectively do not meet the requirements of future service. We propose the cocyclic Jacket matrices, mathematically let ( ) kl A a = be a matrix, if ( ) 1 1 T kl A a − − = , then the matrix A is a Jac...
متن کاملAn explicit construction of fast cocyclic jacket transform on the finite field with any size
An orthogonal cocyclic framework of the block-wise inverse Jacket transform (BIJT) is proposed over the finite field. Instead of the conventional block-wise inverse Jacket matrix (BIJM), we investigate the cocyclic block-wise inverse Jacket matrix (CBIJM), where the high-order CBIJM can be factorized into the low-order sparse CBIJMs with a successive block architecture. It has a recursive fashi...
متن کاملThe cocyclic Hadamard matrices of order less than 40
In this paper all cocyclic Hadamard matrices of order less than 40 are classified. That is, all such Hadamard matrices are explicitly constructed, up to Hadamard equivalence. This represents a significant extension and completion of work by de Launey and Ito. The theory of cocyclic development is discussed, and an algorithm for determining whether a given Hadamard matrix is cocyclic is describe...
متن کاملCocyclic Development of Designs
We present the basic theory of cocyclic development of designs, in which group development over a finite group G is modified by the action of a cocycle defined on G x G. Negacyclic and w-cyclic development are both special cases of cocyclic development. Techniques of design construction using the group ring, arising from difference set methods, also apply to cocyclic designs. Important classes ...
متن کاملClassifying cocyclic Butson Hadamard matrices
We classify all the cocyclic Butson Hadamard matrices BH(n, p) of order n over the pth roots of unity for an odd prime p and np ≤ 100. That is, we compile a list of matrices such that any cocyclic BH(n, p) for these n, p is equivalent to exactly one element in the list. Our approach encompasses non-existence results and computational machinery for Butson and generalized Hadamard matrices that a...
متن کامل